Fishlake-scripts.ru

Образование и уроки
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Модели машинного обучения

Как выбрать модель машинного обучения

Для начала рассмотрим некоторые руководящие принципы, которые используются при создании моделей:

  • Сбор данных (обычно в больших количествах).
  • Установление цели, гипотезы для проверки и сроков для достижения.
  • Проверка на наличие аномалий или выбросов.
  • Поиск недостающих данных.
  • Очистка данных на основе ограничений, целей и тестирования гипотез.
  • Выполнение статистического анализа и начальной визуализации.
  • Масштабирование, регуляризация, нормализация, разработка функций, случайная выборка и проверка данных для подготовки модели.
  • Обучение и тестирование данных.
  • Создание моделей на основе показателей классификации/регрессии для обучения с учителем или без него.
  • Установление базовой точности и проверка точности текущей модели на данных для обучения и тестирования.
  • Повторная проверка решения проблемы и полученных результатов.
  • Подготовка модели для развертывания и поставки продукта (AWS, Docker, Buckets, App, веб-сайт, ПО, Flask и т. д.).

Задачи машинного обучения подразделяются на обучение с учителем, без учителя, с частичным привлечением учителя и с подкреплением.

В процессе обучения с частичным привлечением учителя используются немаркированные данные для улучшения понимания структуры в целом. Другими словами, мы изучаем особенности только на основе небольшого набора для обучения, потому что он маркирован! Мы не используем преимущества тестового набора, содержащего множество ценной информации, из-за отсутствия маркировки. В результате нам необходимо найти способ обучения на основе большого количества немаркированных данных.

Обучение с подкреплением — это принятие подходящих мер для максимизации выгоды в определенной ситуации. Машина или робот обучаются, пробуя все возможные пути, а затем выбирают тот, который дает наибольшую выгоду с наименьшими трудностями.

Подходы

Ниже приведены подходы к выбору модели для решения задач машинного обучения/глубокого обучения:

  1. Несбалансированные данные достаточно распространены.

Обработку несбалансированных данных можно осуществить с помощью ресамплинга — использования выборки данных для повышения точности и подсчета погрешностей параметра совокупности. Методы ресамплинга используют технику вложенного ресамплинга.

Мы разделяем исходные данные на наборы для обучения и тестирования. После нахождения подходящих коэффициентов для модели с помощью первого набора мы применяем эту модель ко второму набору, чтобы обнаружить точность модели. Эта финальная точность, полученная перед применением ее к неизвестным данным, также называется набором для проверки и обеспечивает возможность получения более точных результатов.

Однако при дополнительном разделении набора для обучения на поднаборы и расчете их финальной точности, а затем многократного повторения этого процесса для множества поднаборов, можно добиться максимальной точности! Ресамплинг выполняется для повышения точности модели и разделяется на несколько способов, таких как начальная загрузка, перекрестная проверка, многократная перекрестная проверка и т. д.

2. Мы можем создавать новые функции с помощью метода главных компонент.

Этот метод также известен как PCA и помогает уменьшить размерность. Методы кластеризации очень распространены при обучении без учителя.

3. Мы можем предотвратить переобучение, недостаточное обучение, выбросы и шум с помощью методов регуляризации.

4. Нам необходимо устранить проблему «черного ящика».

Для решения этой проблемы стоит рассмотреть стратегии для построения интерпретируемых моделей. Системы ИИ «черного ящика» для автоматического принятия решений в большинстве случаев основаны на машинном обучении на больших данных, отображающих функции пользователя в класс, который предсказывает поведенческие черты личности без объяснения причин.

Проблема заключается не только в отсутствии прозрачности, но и в возможном возникновении погрешностей, унаследованных алгоритмами от человеческих предрассудков, и сборе артефактов, скрытых в данных обучения, которые могут привести к неправильным решениям и неправильному анализу.

5. Понимание алгоритмов, не восприимчивых к выбросам.

Чтобы преодолеть отклонение от нормы, можно использовать произвольность в моделях или случайные леса.

Модели машинного обучения

  1. Первый подход к предсказанию постоянных значений: линейная регрессия — наиболее распространенный выбор, например, при предсказании стоимости жилья.
  2. Подходы бинарной классификации обычно схожи с моделями логистической регрессии. При возникновении проблемы классификации с двумя классами методы опорных векторов (SVM) — отличный способ получения наилучшего результата!
  3. Мультиклассовая классификация: случайные леса — предпочтительный выбор, однако SVM обладают схожими преимуществами. Случайные леса больше предназначены для мультикласса!

Для мультикласса нужно разбить данные на несколько задач бинарной классификации. Случайные леса отлично подходят для работы с несколькими числовыми и категориальными признаками, даже если они обладают различными масштабами. Это означает, что вы можете работать с исходными данными. SVM максимизируют отступ и основываются на концепции расстояния между различными точками. Остается только решить, действительно ли расстояние имеет значение!

В результате для категориальных признаков необходимо использовать единый код. Кроме того, в качестве предварительной обработки рекомендуется применять min-max или другое масштабирование. Для наиболее распространенных задач классификации случайные леса предоставляют вероятность принадлежности к этому классу, в то время как SVM предоставляют расстояние до границы, которую все же нужно преобразовать при необходимости в вероятность. SVM предоставляют опорные вектора — точки в каждом ближайшем к границе классе.

4. Деревья решений просты в использовании и понимании. Они реализуются с помощью таких моделей, как случайные леса или градиентный бустинг.

5. Для соревнований Kaggle предпочтительны случайный лес и XGBoost!

Модели глубокого обучения

Глубокое обучение — это функция ИИ, которая имитирует работу человеческого мозга при обработке данных и создании шаблонов для использования в принятии решений.

Мы можем использовать многослойные персептроны, чтобы сосредоточиться на сложных в определении признаках, которые содержат большое количество маркированных данных!

Многослойный персептрон (MLP) — это искусственная нейронная сеть с прямой связью, которая генерирует набор выходных данных из набора входных. MLP характеризуется несколькими слоями входных узлов, связанных как ориентированный граф между входным и выходным слоями.

Для машинного обучения на основе зрения, такого как классификация изображений, обнаружение объектов, сегментация или распознавание изображений, используется сверточная нейронная сеть (CNN). CNN используются в распознавании и обработке изображений, которые предназначены для обработки пиксельных данных.

Для задач моделирования последовательности, таких как языковой перевод или классификация текста, предпочтительны рекуррентные нейронные сети (RNN).

RNN созданы для моделей, которые нуждаются в контексте, чтобы предоставить выходные данные на основе входных. В некоторых случаях контекст играет решающую роль для предсказания наиболее подходящего результата. В других нейронных сетях все входные данные независимы друг от друга.

Гид по структуре машинного обучения

Контент-маркетолог Мария Пушикова специально для блога Нетологии перевела статью Charles-Antoine Richard о том, что такое машинное обучение и какие методы машинного обучения существуют.

Совсем недавно мы обсуждали необходимость использования методов машинного обучения в бизнесе. Это подтолкнуло меня изучить основы методов машинного обучения, во время чего я сознал: большая имеющейся часть информации направлена на разработчиков или специалистов по Big Data.

Поэтому я решил, что читателям будет интересно прочесть объяснение методов машинного обучения от человека нетехнической специальности.

Машинное обучение — это…

Вот самое простое определение, которое я нашел:

Машинное обучение — это «[…] класс методов искусственного интеллекта, которые позволяют улучшить результаты работы компьютеров путем обучения на известных данных», — Berkeley.

Теперь давайте разложим все по полочкам, чтобы выстроить основы знаний в области машинного обучения.

…подраздел искусственного интеллекта (ИИ)

ИИ — это наука и технология по разработке мероприятий и методов, позволяющих компьютерам успешно выполнять задачи, которые обычно требуют интеллектуального осмысления человека. Машинное обучение — часть этого процесса: это методы и технологии, с помощью которых можно обучит компьютер выполнять поставленные задачи.

…способ решения практических задач

Методы машинного обучения все еще в развитии. Некоторые уже изучены и используются (рассмотрим дальше), но ожидается, что со временем их количество будет только расти. Идея в том, что совершенно разные методы используются для совершенно разных компьютеров, а различные бизнес-задачи требуют различных методов машинного обучения.

… способ увеличить эффективность компьютеров

Для решения компьютером задач с применением искусственного интеллекта нужны практика и автоматическая поднастройка. Модель машинного обучения нуждается в тренировке с использованием базы данных и в большинстве ситуаций — в подсказке человека.

…технология, основанная на опыте

ИИ нуждается в предоставлении опыта — иными словами, ему необходимы данные. Чем больше в систему ИИ поступает данных, тем точнее компьютер взаимодействует с ними, а также с теми данными, что получает в дальнейшем. Чем выше точность взаимодействия, тем успешнее будет выполнение поставленной задачи, и выше степень прогностической точности.

Простой пример:

  1. Выбираются входные данные и задаются условия ввода (например, банковские операции с использованием карт).
  2. Строится алгоритм машинного обучения и настраивается на конкретную задачу (например, выявлять мошеннические транзакции).
  3. Используемые в ходе обучения данные дополняются желаемой выходной информацией (например, эти транзакции — мошеннические, а эти нет).
Читать еще:  Обучение ruby on rails с нуля

Как работает машинное обучение

Машинное обучение часто называют волшебным или черным ящиком:

Вводишь данные → «волшебный черный ящик» → Миссия выполнена.

Давайте посмотрим на сам процесс обучения, чтобы лучше понять, как машинное обучение справляется с данными.

Машинное обучение основывается на данных. Первый шаг — убедиться, что имеющиеся данные верны и относятся именно к той задаче, которую вы пытаетесь решить. Оцените свои возможности для сбора данных, обдумайте их источник, необходимый формат и т. д.

Очистка

Данные зачастую формируются из различных источников, отображаются в различных форматах и языках. Соответственно, среди них могут оказаться нерелевантные или ненужные значения, которые потребуется удалить. И наоборот, каких-то данных может не хватать, и потребуется их добавить. От правильной подготовки базы данных прямым образом зависит и пригодность к использованию, и достоверность результатов.

Разделение

В зависимости от размера набора данных в некоторых случаях может потребоваться только небольшая их часть. Обычно это называется выборкой. Из выбранной части данные надо разделить на две группы: одна для использования алгоритмом, а другая для оценки его действий.

Обучение

Этот этап фактически направлен на поиск математической функции, которая точно выполнит указанную задачу. Обучение разнится в зависимости от типа используемой модели. Построение линий в простой линейной модели — это обучение; генерация дерева принятия решений для алгоритма случайного леса — это также обучение. Изменение ответов при построении дерева решений поможет скорректировать алгоритм.

Чтобы было проще, сосредоточимся на нейронных сетях.

Суть в том, что алгоритм использует часть данных, обрабатывает их, замеряет эффективность обработки и автоматически регулирует свои параметры (также называемый метод обратного распространения ошибки) до тех пор, пока не сможет последовательно производить желаемый результат с достаточной достоверностью.

Оценка

После того как алгоритм хорошо показал себя на учебных данных, его эффективность оценивается на данных, с которыми он еще не сталкивался. Дополнительная корректировка производится при необходимости. Этот процесс позволяет предотвратить переобучение — явление, при котором алгоритм хорошо работает только на учебных данных.

Оптимизация

Модель оптимизируется, чтобы при интеграции в приложение весить как можно меньше и как можно быстрее работать.

Какие существуют типы машинного обучения и чем они отличаются

Существует множество моделей для машинного обучения, но они, как правило, относятся к одному из трех типов:

  • обучение с учителем (supervised learning);
  • обучение без учителя, или самообучение (unsupervised learning);
  • обучение с подкреплением (reinforcement learning).

В зависимости от выполняемой задачи, одни модели могут быть более подходящими и более эффективными, чем другие.

Обучение с учителем (supervised learning)

В этом типе корректный результат при обучении модели явно обозначается для каждого идентифицируемого элемента в наборе данных. Это означает, что при считывании данных у алгоритма уже есть правильный ответ. Поэтому вместо поисков ответа он стремится найти связи, чтобы в дальнейшем, при введении необозначенных данных, получались правильные классификация или прогноз.

В контексте классификации алгоритм обучения может, например, снабжаться историей транзакций по кредитным картам, каждая из которых помечена как безопасная или подозрительная. Он должен изучить отношения между этими двумя классификациями, чтобы затем суметь соответствующим образом маркировать новые операции в зависимости от параметров классификации (например, место покупки, время между операциями и т. д.).

В случае когда данные непрерывно связаны друг с другом, как, например, изменение курса акций во времени, регрессионный алгоритм обучения может использоваться для прогнозирования следующего значения в наборе данных.

Обучение без учителя (unsupervised learning)

В этом случае у алгоритма в процессе обучения нет заранее установленных ответов. Его цель — найти смысловые связи между отдельными данными, выявить шаблоны и закономерности. Например, кластеризация — это использование неконтролируемого обучения в рекомендательных системах (например, люди, которым понравилась эта бутылка вина, также положительно оценили вот эту).

Обучение с подкреплением

Этот тип обучения представляет собой смесь первых двух. Обычно он используется для решения более сложных задач и требует взаимодействия с окружающей средой. Данные предоставляются средой и позволяют алгоритму реагировать и учиться.

Область применения такого метода обширна: от контроля роботизированных рук и поиска наиболее эффективной комбинации движений, до разработки систем навигации роботов, где поведенческий алгоритм «избежать столкновения» обучается опытным путем, получая обратную связь при столкновении с препятствием.

Логические игры также хорошо подходят для обучения с подкреплением, так как они традиционно содержат логическую цепочку решений: например, покер, нарды и го, в которую недавно выиграл AlphaGo от Google. Этот метод обучения также часто применяется в логистике, составлении графиков и тактическом планировании задач.

Для чего можно использовать машинное обучение

В бизнесе можно рассматривать три сферы применения машинного обучения: описательную, прогнозирующую и нормативную.

Описательное применение относится к записи и анализу статистических данных для расширения возможностей бизнес-аналитики. Руководители получают описание и максимально информативный анализ результатов и последствий прошлых действий и решений. Этот процесс в настоящее время обычен для большинства крупных компаний по всему миру — например, анализ продаж и рекламных проектов для определения их результатов и рентабельности.

Второе применение машинного обучения — прогнозирование. Сбор данных и их использование для прогнозирования конкретного результата позволяет повысить скорость реакции и быстрее принимать верные решения. Например, прогнозирование оттока клиентов может помочь его предотвратить. Сегодня этот процесс применяется в большинстве крупных компаний.

Третье и наиболее продвинутое применение машинного обучения внедряется уже существующими компаниями и совершенствуется усилиями недавно созданных. Простого прогнозирования результатов или поведения уже недостаточно для эффективного ведения бизнеса. Понимание причин, мотивов и окружающей ситуации — вот необходимое условие для принятия оптимального решения. Этот метод наиболее эффективен, если человек и машина объединяют усилия. Машинное обучение используется для поиска значимых зависимостей и прогнозирования результатов, а специалисты по данным интерпретируют результат, чтобы понять, почему такая связь существует. В результате становится возможным принимать более точные и верные решения.

Кроме того, я бы добавил еще одно применение машинного обучения, отличное от прогнозного: автоматизация процессов. Прочесть об этом можно здесь.

Вот несколько примеров задач, которые решает машинное обучение.

Логистика и производство

  • В Rethink Robotics используют машинное обучение для обучения манипуляторов и увеличения скорости производства;
  • В JaybridgeRobotics автоматизируют промышленные транспортные средства промышленного класса для более эффективной работы;
  • В Nanotronics автоматизируют оптические микроскопы для улучшения результатов осмотра;
  • Netflix и Amazon оптимизируют распределение ресурсов в соответствии с потребностями пользователей;
  • Другие примеры: прогнозирование потребностей ERP/ERM; прогнозирование сбоев и улучшение техобслуживания, улучшение контроля качества и увеличение мощности производственной линии.

Продажи и маркетинг

  • 6sense прогнозирует, какой лид и в какое время наиболее склонен к покупке;
  • Salesforce Einstein помогает предвидеть возможности для продаж и автоматизировать задачи;
  • Fusemachines автоматизирует планы продаж с помощью AI;
  • AirPR предлагает пути повышения эффективности PR;
  • Retention Science предлагает кросс-канальное вовлечение;
  • Другие примеры: прогнозирование стоимости жизненного цикла клиента, повышение точности сегментации клиентов, выявление клиентских моделей покупок, и оптимизация опыта пользователя в приложениях.

Кадры

  • Entelo помогает рекрутерам находить и отбирать кандидатов;
  • HiQ помогает менеджерам в управлении талантами.

Финансы

  • Cerebellum Capital and Sentient используют машинное обучение для улучшения процесса принятия инвестиционных решений;
  • Dataminr может помочь с текущими финансовыми решениями, заранее оповещая о социальных тенденциях и последних новостях;
  • Другие примеры: выявление случаев мошенничества и прогнозирование цен на акции.

Здравоохранение

  • Atomwise использует прогнозные модели для уменьшения времени производства лекарств;
  • Deep6 Analytics определяет подходящих пациентов для клинических испытаний;
  • Другие примеры: более точная диагностика заболеваний, улучшение персонализированного ухода и оценка рисков для здоровья.

Больше примеров использования машинного обучения, искусственного интеллекта и других связанных с ними ресурсов вы найдете в списке, созданном Sam DeBrule.

Вместо заключения

Помните, что совместное использование разных систем и методик — ключ к успеху. ИИ и машинное обучение хоть и сложны, но увлекательны. Буду рад продолжить обсуждение стратегий разработки и проектирования с использованием больших данных вместе с вами. Комментируйте и задавайте вопросы.

Мнение автора и редакции может не совпадать. Хотите написать колонку для «Нетологии»? Читайте наши условия публикации.

Профессия Data Scientist: машинное обучение

Вы научитесь создавать аналитические системы и использовать алгоритмы машинного обучения, освоите работу с нейросетями. Наполните портфолио и получите престижную профессию.

Записаться на курс

  • Длительность 13 месяцев
  • Помощь в трудоустройстве
  • 7 курсов в одной программе
  • Доступ к курсу навсегда
Читать еще:  Обучение тектонику для начинающих

На рынке не хватает специалистов по Data Science

  • 2 300 компаний сейчас ищут специалистов в Data Science & Machine Learning
  • 80 000 рублей зарплата начинающего специалиста

Данные сайта hh.ru

Кому подойдёт этот курс

Новичкам в IT

Вы получите базовые навыки по аналитике, статистике и математике, которые откроют путь к карьере в Data Science и Machine Learning.

Программистам

Вы прокачаете свои знания и навыки в программировании на Python. Научитесь использовать алгоритмы машинного обучения, решать бизнес-задачи — и усилите портфолио мощными проектами.

Менеджерам и владельцам бизнеса

Научитесь использовать данные для построения прогнозов и оптимизации бизнес-процессов и переведёте компанию на новый уровень.

Чему вы научитесь

Программировать на Python

Визуализировать данные

Работать с библиотеками и базами данных

Применять нейронные сети для решения реальных задач

Строить модели машинного обучения

Писать рекомендательные системы

От первого урока к работе мечты

Студенты и выпускники Skillbox получают индивидуальную поддержку от Центра карьеры на протяжении всего обучения — от помощи с выбором профессии до выхода на работу мечты. Вот как это происходит.

С каждым уроком ваш профессиональный уровень растёт и вы можете планировать карьеру уже во время обучения.

Реакция потенциального работодателя зависит от того, как вы подаёте себя в резюме. Мы дадим советы по его составлению и поможем написать резюме, подающее вас лучшим образом.

Выбираете лучшую вакансию

Мы экономим ваше время — подбираем подходящие вакансии и договариваемся об интервью с работодателем. Вам нужно только пройти собеседование.

Начинаете карьеру мечты

Вы успешно проходите собеседование, выходите на работу и сразу начинаете выполнять задачи.

Записаться на курс или получить бесплатную консультацию

Похоже произошла ошибка. Попробуйте отправить снова или перезагрузите страницу.

Ваша заявка успешно отправлена

Как проходит обучение

Изучаете тему

В курсе — практические видеоуроки.

Выполняете задания

В том темпе, в котором вам удобно.

Работаете с наставником

Закрепляете знания и исправляете ошибки.

Защищаете дипломную работу

И дополняете ею своё портфолио.

Программа

Вас ждут 7 курсов с разным уровнем сложности, знание которых можно приравнять к году работы.

  1. Аналитика. Начальный уровень
  1. Введение.
  2. Основы Python: базовые структуры данных.
  3. Основы Python: циклы и условия.
  4. Основы Python: функции.
  5. Основы Python: классы и объекты.
  6. Основы Python: исключения.
  7. Библиотека NumPy. Часть 1.
  8. Библиотека NumPy. Часть 2.
  9. Библиотека pandas. Часть 1.
  10. Библиотека pandas. Часть 2.
  11. Визуализация данных с помощью matplotlib.
  12. Чтение и запись данных.
  13. Введение в SQL.
  14. Работа со строками.
  1. Основы статистики и теории вероятностей.
  1. Основные концепции Machine Learning (ML).
  2. Жизненный цикл ML-проекта.
  3. Регрессия.
  4. Классификация.
  5. Кластеризация
  6. Дополнительные техники.
  7. Знакомство с Kaggle.
  1. Базовые математические объекты и SymPy. Дроби и преобразования.
  2. Базовые математические объекты и SymPy. Необходимые функции и некоторые дополнительные объекты.
  3. Функции одной переменной, их свойства и графики.
  4. Интерполяция и полиномы.
  5. Аппроксимация и преобразования функций.
  6. Функции нескольких переменных, их свойства и графики.
  7. Линейные функции.
  8. Матрицы и координаты.
  9. Линейные уравнения.
  10. Производная функции одной переменной.
  11. Производная по направлению и градиент + частные производные.
  12. Линейная регрессия.
  13. Собственные векторы и значения. Определитель.
  14. Разложения матриц.
  1. Введение в нейронные сети.
  2. Обучение нейронных сетей.
  3. Нейронные сети на практике.
  4. Свёрточные нейросети для задачи классификации изображений.
  5. Семантическая сегментация. Часть 1. Слабая локализация и полносвёрточные нейросети (FCN).
  6. Семантическая сегментация. Часть 2. Продвинутые архитектуры FCN для семантической сегментации.
  7. Детектирование объектов.
  8. От дискриминативных моделей к генеративным. Style transfer.
  9. Генеративные состязательные сети.
  10. Введение в NLP.
  11. NLP на нейросетях. Рекуррентные нейросети, классификация текстов.
  12. NLP на нейросетях. Языковые модели, Attention, Transformer.
  13. Обучение с подкреплением. Q-Learning.
  14. Обучение с подкреплением. Deep Q-Learning.
  15. Ускорение и оптимизация нейронных сетей.
  16. Внедрение в DL моделей в Production.
  17. Рекомендательные системы.
  18. Вывод моделей машинного обучения в production, post production и мониторинг.
  1. Как стать первоклассным программистом.
  2. Как искать заказы на разработку.
  3. Личный бренд разработчика.
  4. Photoshop для программиста.
  5. Вёрстка email-рассылок. Советы на реальных примерах.
  6. The state of soft skills.
  7. Как мы создавали карту развития для разработчиков.
  8. Как общаться по email и эффективно работать с почтой.
  9. Повышение своей эффективности.
  10. Спор о первом языке программирования.
  11. Саморазвитие: как я не усидел на двух стульях и нашёл третий.
  12. Data-driven подход к продуктивности — инсайты из данных миллиона людей.
  1. IT Resume and CV.
  2. Job interview: questions and answers.
  3. Teamwork.
  4. Workplace communication.
  5. Business letter.
  6. Software development.
  7. System concept development and SRS.
  8. Design.
  9. Development and Testing.
  10. Deployment and Maintenance.

Уже учились на каком-то курсе из программы?

Скажите об этом менеджеру — за этот курс платить не придётся!

Получить полную программу курса и консультацию

Похоже произошла ошибка. Попробуйте отправить снова или перезагрузите страницу.

Машинное обучение

Целью сообщества является популяризация Машинного обучения — на данный момент, одной из самых перспективных наук. Если роботы заменят всех людей, то останемся только мы: те, кто создает роботов. Сейчас нас очень мало, но, может, вскоре будет еще больше.

Здесь можно найти все: от новостей до научных статей. Можно задавать любые вопросы (в комментариях) и делиться новостями, информацией, своими успехами в данной области.

Целью сообщества не является создать учебник по математике или ML.

Хоть премодерации в сообществе и нет, правила обязательны к исполнению.

Управление сообществом

— Делиться вопросами, мыслями, гипотезами, юмором на эту тему.

— Делиться статьями, понятными большинству аудитории Пикабу.

— Делиться опытом создания моделей машинного обучения.

— Рассказывать, как работает та или иная фиговина в ML.

— Век жить, век учиться.

I) Невостребованный контент

I.1) Создавать контент, сложный для понимания. Такие посты уйдут в минуса лишь потому, что большинству неинтересно пробрасывать градиенты в каждом тензоре реккурентной сетки с AdaGrad оптимизатором.

I.2) Создавать контент на «олбанском языке» / нарочно игнорируя правила РЯ даже в шутку. Это ведет к нечитаемости контента.

II) Нетематический контент

II.1) Создавать контент, несвязанный с Data Science, математикой, программированием.

II.2) Создавать контент, входящий в противоречие существующей базе теорем математики. Например, «Земля плоская» или «Любое действительное число представимо в виде дроби двух целых».

II.3) Создавать контент, входящий в противоречие с правилами Пикабу.

III) Непотребный контент

III.1) Эротика, порнография (даже с NSFW).

За нарушение I — предупреждение

За нарушение II — предупреждение и перемещение поста в общую ленту

За нарушение III — бан

Робота обучили передвигаться, как четвероногое животное

Исследователи из UC Berkeley обучили робота имитировать поведение собаки с помощью обучения с подкреплением. Предложенный фреймворк масштабируется на другие виды животных. Модель получает на вход видеоролик с записью движения животного. На основе входного ролика RL-агент выучивает политику контроля движений, которая позволяет ему имитировать движение. Поддержка других видов движения добавляется аналогично. Исследователи обучили RL-агента выполнять такие действия, как поворот, быстрая ходьба и прыжок. Политики агент выучивает в симуляции. Затем модель переносится в реальный мир с помощью метода адаптации скрытого пространства, который позволяет адаптировать политику к реальной среде на основе коротки видеозаписей реального робота.

Ниже — описание самой научной работы в формате видео

Предложенный фреймворк состоит из трех этапа:

1. Переоценка движения, во время которой движения животного на входной видеозаписи соотносятся с движениями робота;

2. Имитация движения, когда выход из первого этапа используется для обучения политики имитации движения агента;

3. Адаптация к реальной среде, когда обученная модель из симуляции переносится на реальную среду

В качестве робота использовали модель четвероногого робота от Laikago.

Проверка работы алгоритма

RL-агент способен выучивать различные типы движений собаки. Среди типов движений — разные виды ходьбы, включая бег рысью или неспешный шаг, и быстрые повороты. Если обучать агента на видеозаписях с ходьбой, отмотанных в обратную сторону, то робот научается ходить назад.

Сравнение поведения до и после обучения робота: до адаптации робот склонен к падению в ходе выполнения задачи; после же тот готов последовательно исполнять предлагаемые команды.

Google AI опубликовали датасет для восстановления 3D формы зданий

Исследователи опубликовали датасет с неструктурированными изображениями культурных объектов. Он включает в себя 25 тысяч изображений, каждое из которых содержит информацию о местоположении и наклоне. Данные собирали из открытых источников в интернете. Датасет создавали в сотрудничестве с UVIC, CTU и EPFL.

Восстановление 3D структуры зданий

Реконструкция 3D объектов и зданий из последовательности изображений (Structure-from-Motion) — это одна из открытых проблем компьютерного зрения. Одним из применений таких моделей является возможность изучения культурных объектов в браузере.

Читать еще:  Сертификат наращивания ногтей обучение бесплатно

Google Maps уже использует изображения пользователей для обновления списка популярных мест или рабочих часов места. Однако использование такого типа данных для построения 3D моделей является более сложной задачей. Это связано с тем, что поступающие изображения имеют большую вариативность в том, с какой позиции снимали кадр, перекрывали ли люди объект на кадре и какие были погодные условия и освещение.

Что внутри датасета

Опубликованный датасет включает в себя 25 тысяч изображений из датасета YFCC100m. Каждое изображение имеет данные о позе (локация и направление). Исследовали сгенерировали тестовые 3D модели с помощью крупномасштабной SfM модели, которая использовала от сотен до тысяч фотографий здания для восстановления формы объекта. Такой подход не потребовал использования сенсоров или человеческой разметки для сбора данных.

3D форма объекта (Фонтан Треви), которую восстановили из 3 тысяч фотографий

Мелитон Кантария

Автоматическая колоризация ( https://9may.mail.ru/restoration ) + резкость (Remini)

Восстановил фотку деда, 1916 г. ему 16 годов

MORTAL KOMBAT HD

На волне мемов в HD качестве решила запилить персонажей всеми любимой игры. Получилось очень даже забавно.

Какой-то раскрашенный мужчина в образе Милины

Скорпион на стиле

Как мы в лаборатории ИИ живого Геральта делаем

Меня зовут Даша, и я уже полгода работаю лингвистом в лаборатории искусственного интеллекта. В прошлом году мы вступили в Европейскую Конфедерацию Лабораторий ИИ (CLAIRE) и стали членами экспертной комиссии по формированию стратегии развития Общего ИИ в РФ. Сами базируемся в Краснодаре.
Кроме игры в кс по вечерам, мы занимаемся созданием искусственного интеллекта. Лично я работаю над направлением, которое поможет оживить персонажей в играх. В качестве нашего подопытного, мы выбрали игру Ведьмак 3 — будем обкатывать ее главного героя Геральта из Ривии и его друзей. Эти персонажи будут вести себя как настоящие люди: обладать уникальными чертами характера, объёмом специфической информации, интересами и так далее.. Все это позволят наделять персонажей компьютерных игр личностными модулями, особыми знаниями, возможностью общаться. Делать их умными и живыми.
Возникает вопрос: чего мы вообще за это взялись?

У вас было когда-нибудь такое, что вы играете, скажем в dragon age, mass effect, того же ведьмака, душу вкладываете, друзей набираете, а потом заканчиваете главный квест и все? Ничего. Пустота. Вы еще можете ходить и выполнять квесты, но мир мертв. Подходите вы к своему романтическому интересу или боевому товарищу, а он или она такие: «хмм, чего тебе?».

Больше от них ничего не дождешься.

А сердечко болит.

Мы с этим тоже столкнулись, нам это не понравилось. Да и даже без основных квестов — хочется больше интерактивности, общения. Особенно сейчас, когда сидишь, сычуешь дома, потому что ввели карантин. Ни в универ, ни на работу не сходить. Остается только смотреть фильмы, играть в игры и болтать по дискорду, когда связь позволяет. Ну и делать вылазки в ближайший магазин по улицам похожим на зону отчуждения.

На данный момент мы работаем вместе с сообществом фанатов Ведьмака. Мы пилим интеллект, а ребята помогают нам собирать знания по вселенной. Сначала это были сложные таблицы, но мы выпустили быстро склеенную программу, и теперь актуализировать знания куда проще. В программе сейчас доступны задания по оружию, броне и персонажам, скоро добавятся новые.

Также было необходимо выбрать конкретную сюжетную линию, которую «прожил» Геральт, так как мы формируем картину мира на момент финала дополнения «Кровь и Вино», когда он уже осел в своём Корво Бьянко. Мы уже сделали этот выбор и на канале Evoice Erebus вышли три ролика по каждой игре, где он объясняет логичность того или иного выбора.

Параллельно этому процессу мы занимаемся развитием самой технологии. Каждый месяц появляются новые интеллектуальные возможности, знания, настройки. Уже сейчас появляются новые инструменты работы над личностью Геральта и других персонажей. Среди них можно выделить:

16 марта мы показали небольшое демо первой сборки «оживлённого» Геральта из Ривии. На данный момент у него есть базовые знания о «мире» Дикой Охоты и некоторые личные знания. Мы постепенно накатываем на него новые интеллектуальные возможности по мере роста объёма знаний.

Feature engineering: шесть шагов для создания успешной модели машинного обучения

Исследования в области машинного обучения приводят к созданию новых алгоритмов и методик. Даже такой метод, как feature engineering, существующий уже несколько десятилетий, постоянно обновляется. Команды разработчиков должны постоянно учиться и прокачивать свои навыки, генерируя новые подходы в машинном обучении. «Хайтек» перевел и дополнил статью VentureBeat, чтобы рассказать о современных методиках в feature engineering и дать советы разработчикам по созданию моделей с добавленной стоимостью.

Метод feature engineering так же стар, как и data science. Но почему-то он становится все более забытым. Высокий спрос на машинное обучение вызвал ажиотаж среди ученых-исследователей. Сегодня у них огромный опыт создания инструментов и алгоритмов. Но у них недостаточно отраслевых знаний, требуемых для feature engineering. Исследователи пытаются компенсировать это инструментами и алгоритмами. Однако алгоритмы теперь являются лишь товаром и сами по себе не генерируют корпоративное IP-портфолио (портфель интеллектуальных прав, принадлежащих компании — «Хайтек»).

Feature engineering (с англ. «создание показателей, признаков») — техника решения задач машинного обучения, позволяющая увеличить качество разрабатываемых алгоритмов. Предусматривает превращение данных, специфических для предметной области, в понятные для модели векторы. Чтобы эффективно решить задачу с feature engineering, необходимо быть экспертом в конкретной области и понимать, что влияет на конкретную целевую переменную. Поэтому многие разработчики называют feature engineering искусством, требующим решения большого количества задач и наработки опыта.

Сегодня такие стартапы, как ContextRelevant и SparkBeyond, разрабатывают новые инструменты, которые упростят для пользователей процесс создания и отбора показателей (feature selection).

Обобщенные данные тоже становятся товаром, а облачные сервисы машинного обучения (MLaaS), такие, как Amazon ML и Google AutoML, теперь позволяют даже менее опытным членам команды запускать модели данных и получать их прогнозы в течение нескольких минут. Но в результате этого набирают обороты те компании, которые развивают организационную компетенцию в сборе или изготовлении собственных данных, создаваемых при feature engineering. Простого сбора данных и построения моделей уже недостаточно.

Корпорации многому учатся у победителей соревнований по моделированию, таких как KDD Cup и Heritage Provider Network Health Prize. Своими успехами они обязаны именно грамотному подходу к методу feature engineering.

Ян Лекун, Facebook: прогностические модели мира — решающее достижение в ИИ

Методы feature engineering

Для техники feature engineering ученые разработали ряд методов.

Контекстная трансформация. Он включает в себя преобразование отдельных функций из исходного набора в более контекстуально значимую информацию для каждой конкретной модели.

Например, при использовании категориальной функции в качестве «неизвестного» может быть специальная информация в контексте ситуации. Но внутри модели это выглядит, как просто другое значение категории. В этом случае можно ввести новую двоичную функцию has_value, чтобы отделить «неизвестное» от всех других опций. Например, функция color позволит ввести has_color для какого-то неизвестного цвета.

Команды машинного обучения часто используют биннинг для разбивания отдельных функций на несколько для лучшего понимания. Например, разделение функции «возраст» на «молодой» для 60 лет.

Биннинг, или балансировка данных — метод предварительной обработки, используемый для уменьшения влияния незначительных ошибок наблюдения. Исходные значения данных, которые попадают в небольшой интервал, заменяются значением, представляющим этот интервал, часто центральным значением. Это форма квантования.

Некоторые другие примеры преобразований:

  • масштабирование значений между min-max переменной (например, возраста) в диапазоне [0, 1];
  • разделение количества посещений каждого типа ресторана в качестве индикатора «интереса» в кухнях мира.

Многофункциональная арифметика. Другой подход к feature engineering заключается в применении арифметических формул к набору существующих точек данных. Такие формулы создают производные, основанные на взаимодействии между функциями и их отношениях друг к другу.

Построение с многофункциональной арифметикой — очень выгодно, но оно требует полного понимания предмета и целей модели.

Примеры использования формул:

  • расчет благоприятности «местности» из сочетания характеристик «школьного рейтинга» и «уровня преступности»;
  • определение «коэффициента удачи казино» путем сравнения фактических расходов посетителя с ожидаемыми расходами;
  • расчет «коэффициента использования» путем деления баланса «кредитной карты» на «лимит»;
  • получение оценки RFM (членство, частота, финансовый поток), чтобы сегментировать клиентов из комбинации «самой последней транзакции», «частоты транзакций» и «потраченной суммы» в течение определенного периода времени.

Джианкарло Суччи: «Попытка спроектировать программу без багов — утопия»

Ссылка на основную публикацию
Adblock
detector