Fishlake-scripts.ru

Образование и уроки
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Технологии машинного обучения

Гид по структуре машинного обучения

Контент-маркетолог Мария Пушикова специально для блога Нетологии перевела статью Charles-Antoine Richard о том, что такое машинное обучение и какие методы машинного обучения существуют.

Совсем недавно мы обсуждали необходимость использования методов машинного обучения в бизнесе. Это подтолкнуло меня изучить основы методов машинного обучения, во время чего я сознал: большая имеющейся часть информации направлена на разработчиков или специалистов по Big Data.

Поэтому я решил, что читателям будет интересно прочесть объяснение методов машинного обучения от человека нетехнической специальности.

Машинное обучение — это…

Вот самое простое определение, которое я нашел:

Машинное обучение — это «[…] класс методов искусственного интеллекта, которые позволяют улучшить результаты работы компьютеров путем обучения на известных данных», — Berkeley.

Теперь давайте разложим все по полочкам, чтобы выстроить основы знаний в области машинного обучения.

…подраздел искусственного интеллекта (ИИ)

ИИ — это наука и технология по разработке мероприятий и методов, позволяющих компьютерам успешно выполнять задачи, которые обычно требуют интеллектуального осмысления человека. Машинное обучение — часть этого процесса: это методы и технологии, с помощью которых можно обучит компьютер выполнять поставленные задачи.

…способ решения практических задач

Методы машинного обучения все еще в развитии. Некоторые уже изучены и используются (рассмотрим дальше), но ожидается, что со временем их количество будет только расти. Идея в том, что совершенно разные методы используются для совершенно разных компьютеров, а различные бизнес-задачи требуют различных методов машинного обучения.

… способ увеличить эффективность компьютеров

Для решения компьютером задач с применением искусственного интеллекта нужны практика и автоматическая поднастройка. Модель машинного обучения нуждается в тренировке с использованием базы данных и в большинстве ситуаций — в подсказке человека.

…технология, основанная на опыте

ИИ нуждается в предоставлении опыта — иными словами, ему необходимы данные. Чем больше в систему ИИ поступает данных, тем точнее компьютер взаимодействует с ними, а также с теми данными, что получает в дальнейшем. Чем выше точность взаимодействия, тем успешнее будет выполнение поставленной задачи, и выше степень прогностической точности.

Простой пример:

  1. Выбираются входные данные и задаются условия ввода (например, банковские операции с использованием карт).
  2. Строится алгоритм машинного обучения и настраивается на конкретную задачу (например, выявлять мошеннические транзакции).
  3. Используемые в ходе обучения данные дополняются желаемой выходной информацией (например, эти транзакции — мошеннические, а эти нет).

Как работает машинное обучение

Машинное обучение часто называют волшебным или черным ящиком:

Вводишь данные → «волшебный черный ящик» → Миссия выполнена.

Давайте посмотрим на сам процесс обучения, чтобы лучше понять, как машинное обучение справляется с данными.

Машинное обучение основывается на данных. Первый шаг — убедиться, что имеющиеся данные верны и относятся именно к той задаче, которую вы пытаетесь решить. Оцените свои возможности для сбора данных, обдумайте их источник, необходимый формат и т. д.

Очистка

Данные зачастую формируются из различных источников, отображаются в различных форматах и языках. Соответственно, среди них могут оказаться нерелевантные или ненужные значения, которые потребуется удалить. И наоборот, каких-то данных может не хватать, и потребуется их добавить. От правильной подготовки базы данных прямым образом зависит и пригодность к использованию, и достоверность результатов.

Разделение

В зависимости от размера набора данных в некоторых случаях может потребоваться только небольшая их часть. Обычно это называется выборкой. Из выбранной части данные надо разделить на две группы: одна для использования алгоритмом, а другая для оценки его действий.

Обучение

Этот этап фактически направлен на поиск математической функции, которая точно выполнит указанную задачу. Обучение разнится в зависимости от типа используемой модели. Построение линий в простой линейной модели — это обучение; генерация дерева принятия решений для алгоритма случайного леса — это также обучение. Изменение ответов при построении дерева решений поможет скорректировать алгоритм.

Чтобы было проще, сосредоточимся на нейронных сетях.

Суть в том, что алгоритм использует часть данных, обрабатывает их, замеряет эффективность обработки и автоматически регулирует свои параметры (также называемый метод обратного распространения ошибки) до тех пор, пока не сможет последовательно производить желаемый результат с достаточной достоверностью.

Оценка

После того как алгоритм хорошо показал себя на учебных данных, его эффективность оценивается на данных, с которыми он еще не сталкивался. Дополнительная корректировка производится при необходимости. Этот процесс позволяет предотвратить переобучение — явление, при котором алгоритм хорошо работает только на учебных данных.

Оптимизация

Модель оптимизируется, чтобы при интеграции в приложение весить как можно меньше и как можно быстрее работать.

Какие существуют типы машинного обучения и чем они отличаются

Существует множество моделей для машинного обучения, но они, как правило, относятся к одному из трех типов:

  • обучение с учителем (supervised learning);
  • обучение без учителя, или самообучение (unsupervised learning);
  • обучение с подкреплением (reinforcement learning).

В зависимости от выполняемой задачи, одни модели могут быть более подходящими и более эффективными, чем другие.

Обучение с учителем (supervised learning)

В этом типе корректный результат при обучении модели явно обозначается для каждого идентифицируемого элемента в наборе данных. Это означает, что при считывании данных у алгоритма уже есть правильный ответ. Поэтому вместо поисков ответа он стремится найти связи, чтобы в дальнейшем, при введении необозначенных данных, получались правильные классификация или прогноз.

В контексте классификации алгоритм обучения может, например, снабжаться историей транзакций по кредитным картам, каждая из которых помечена как безопасная или подозрительная. Он должен изучить отношения между этими двумя классификациями, чтобы затем суметь соответствующим образом маркировать новые операции в зависимости от параметров классификации (например, место покупки, время между операциями и т. д.).

В случае когда данные непрерывно связаны друг с другом, как, например, изменение курса акций во времени, регрессионный алгоритм обучения может использоваться для прогнозирования следующего значения в наборе данных.

Обучение без учителя (unsupervised learning)

В этом случае у алгоритма в процессе обучения нет заранее установленных ответов. Его цель — найти смысловые связи между отдельными данными, выявить шаблоны и закономерности. Например, кластеризация — это использование неконтролируемого обучения в рекомендательных системах (например, люди, которым понравилась эта бутылка вина, также положительно оценили вот эту).

Обучение с подкреплением

Этот тип обучения представляет собой смесь первых двух. Обычно он используется для решения более сложных задач и требует взаимодействия с окружающей средой. Данные предоставляются средой и позволяют алгоритму реагировать и учиться.

Область применения такого метода обширна: от контроля роботизированных рук и поиска наиболее эффективной комбинации движений, до разработки систем навигации роботов, где поведенческий алгоритм «избежать столкновения» обучается опытным путем, получая обратную связь при столкновении с препятствием.

Логические игры также хорошо подходят для обучения с подкреплением, так как они традиционно содержат логическую цепочку решений: например, покер, нарды и го, в которую недавно выиграл AlphaGo от Google. Этот метод обучения также часто применяется в логистике, составлении графиков и тактическом планировании задач.

Для чего можно использовать машинное обучение

В бизнесе можно рассматривать три сферы применения машинного обучения: описательную, прогнозирующую и нормативную.

Описательное применение относится к записи и анализу статистических данных для расширения возможностей бизнес-аналитики. Руководители получают описание и максимально информативный анализ результатов и последствий прошлых действий и решений. Этот процесс в настоящее время обычен для большинства крупных компаний по всему миру — например, анализ продаж и рекламных проектов для определения их результатов и рентабельности.

Второе применение машинного обучения — прогнозирование. Сбор данных и их использование для прогнозирования конкретного результата позволяет повысить скорость реакции и быстрее принимать верные решения. Например, прогнозирование оттока клиентов может помочь его предотвратить. Сегодня этот процесс применяется в большинстве крупных компаний.

Третье и наиболее продвинутое применение машинного обучения внедряется уже существующими компаниями и совершенствуется усилиями недавно созданных. Простого прогнозирования результатов или поведения уже недостаточно для эффективного ведения бизнеса. Понимание причин, мотивов и окружающей ситуации — вот необходимое условие для принятия оптимального решения. Этот метод наиболее эффективен, если человек и машина объединяют усилия. Машинное обучение используется для поиска значимых зависимостей и прогнозирования результатов, а специалисты по данным интерпретируют результат, чтобы понять, почему такая связь существует. В результате становится возможным принимать более точные и верные решения.

Кроме того, я бы добавил еще одно применение машинного обучения, отличное от прогнозного: автоматизация процессов. Прочесть об этом можно здесь.

Вот несколько примеров задач, которые решает машинное обучение.

Логистика и производство

  • В Rethink Robotics используют машинное обучение для обучения манипуляторов и увеличения скорости производства;
  • В JaybridgeRobotics автоматизируют промышленные транспортные средства промышленного класса для более эффективной работы;
  • В Nanotronics автоматизируют оптические микроскопы для улучшения результатов осмотра;
  • Netflix и Amazon оптимизируют распределение ресурсов в соответствии с потребностями пользователей;
  • Другие примеры: прогнозирование потребностей ERP/ERM; прогнозирование сбоев и улучшение техобслуживания, улучшение контроля качества и увеличение мощности производственной линии.

Продажи и маркетинг

  • 6sense прогнозирует, какой лид и в какое время наиболее склонен к покупке;
  • Salesforce Einstein помогает предвидеть возможности для продаж и автоматизировать задачи;
  • Fusemachines автоматизирует планы продаж с помощью AI;
  • AirPR предлагает пути повышения эффективности PR;
  • Retention Science предлагает кросс-канальное вовлечение;
  • Другие примеры: прогнозирование стоимости жизненного цикла клиента, повышение точности сегментации клиентов, выявление клиентских моделей покупок, и оптимизация опыта пользователя в приложениях.

Кадры

  • Entelo помогает рекрутерам находить и отбирать кандидатов;
  • HiQ помогает менеджерам в управлении талантами.

Финансы

  • Cerebellum Capital and Sentient используют машинное обучение для улучшения процесса принятия инвестиционных решений;
  • Dataminr может помочь с текущими финансовыми решениями, заранее оповещая о социальных тенденциях и последних новостях;
  • Другие примеры: выявление случаев мошенничества и прогнозирование цен на акции.

Здравоохранение

  • Atomwise использует прогнозные модели для уменьшения времени производства лекарств;
  • Deep6 Analytics определяет подходящих пациентов для клинических испытаний;
  • Другие примеры: более точная диагностика заболеваний, улучшение персонализированного ухода и оценка рисков для здоровья.

Больше примеров использования машинного обучения, искусственного интеллекта и других связанных с ними ресурсов вы найдете в списке, созданном Sam DeBrule.

Вместо заключения

Помните, что совместное использование разных систем и методик — ключ к успеху. ИИ и машинное обучение хоть и сложны, но увлекательны. Буду рад продолжить обсуждение стратегий разработки и проектирования с использованием больших данных вместе с вами. Комментируйте и задавайте вопросы.

Мнение автора и редакции может не совпадать. Хотите написать колонку для «Нетологии»? Читайте наши условия публикации.

Технологии машинного обучения

Об авторе: Андрей Беляев, технический директор (CTO) исследовательской компании Neurodata Lab.

Умные дома, самоуправляемые автомобили, роботы-помощники… Нас окружают инновационные технологии, в основе которых лежат алгоритмы, по своей специфике напоминающие работу человеческого мозга. Их называют по-разному: алгоритмы с использованием машинного обучения, глубокого обучения, а иногда и вовсе искусственный интеллект (ИИ).

Читать еще:  Организация обучения игре

В чем разница между этими названиями?

Все задачи, которые может решать человек или компьютер, можно условно разделить на две категории: рутинные и нерутинные.

К рутинным задачам можно отнести те, где достаточно просто найти универсальный путь решения: например, сложение чисел или измерение температуры воздуха.

Искусственным интеллектом сейчас принято называть все, что способно решать нерутинные задачи на уровне, близком к человеческому, а иногда и лучше. Такие задачи окружают нас везде. Камеры над дорогой вычисляют скорость автомобиля, распознают его знак и высылают штраф, а системы безопасности в метро и аэропортах находят преступников в толпе. Все это сегодня принято считать искусственным интеллектом, хотя в действительности алгоритмы, лежащие в основе каждой такой технологии, уникальны. И только некоторые используют машинное обучение.

Получается, что машинное обучение — это обучение ИИ

Искусственный интеллект — это название не какого-то отдельного алгоритма, но скорее группы методов, которыми пользуются для решения различного рода задач. Алгоритмы, которые используют подходы с обучением, являются лишь одной из подгрупп всего того множества алгоритмов, что принято называть искусственным интеллектом.

Машинное обучение — это подход, при котором алгоритм «учится» решать задачу. Один из самых простых примеров алгоритма, использующего машинное обучение, это классификация фотографий на те, где изображены кошки и те, где есть собаки:

Допустим, есть несколько тысяч фотографий кошек и несколько тысяч — собак. Эти данные можно загрузить в алгоритм и заставить его «учиться» отличать кошек от собак, «ругая» за ошибки в классификации и «поощряя» за правильные ответы. В зависимости от количества и качества вводных данных, а также от сложности используемого алгоритма после некоторого количества итераций с «наказанием» и «поощрением», получается обученный алгоритм, которой с разным качеством умеет отличать кошек и собак.

Применяя методы машинного обучения, эти же алгоритмы можно «натренировать» и для выполнения более сложных задач — таких как поиск людей на кадре, определение пола и возраста человека и т.д.

Такие алгоритмы можно научить решать задачи любой сложности?

В теории — да. Но на практике мы сталкиваемся с большим количеством проблем, начиная от недостаточного количества данных для обучения, заканчивая невозможностью интерпретировать действия человека при решении такой же задачи. Получается, что невозможно построить алгоритм, который эти действия бы совершал. Хороший пример — автопилотируемый автомобиль. Научить машину держать полосу, входить в повороты и автоматически перестраивать маршрут, если на дороге ремонт, сравнительно несложно, потому что есть понимание, как вел бы себя человек (а значит, как должна вести себя машина) в таких ситуациях.

Однако научить автомобиль принимать решения в чрезвычайных ситуациях гораздо сложнее: проблема в том, что и самому человеку трудно понять, как именно надо поступать в том или ином экстренном случае. Поэтому человек не может показать алгоритмам примеры хорошего и плохого поведения для таких случаев.

А что насчет глубокого обучения? Чем оно отличается от машинного?

Как машинное обучение является подвидом искусственного интеллекта, так и глубокое обучение является подвидом машинного (см. картинку в начале статьи). В глубоком обучении используются те же подходы: алгоритму дают много данных и «ругают» его за ошибки. Разница здесь в том, что сами алгоритмы глубокого обучения устроены гораздо сложнее и часто используют более серьезные математические модели. Сейчас под алгоритмами глубокого обучения практически всегда подразумевают нейронные сети.

Нейронные сети? Как те, что в мозгу у человека?

Такое сравнение действительно часто используется. Нейросеть — это последовательность слоев, каждый из которых, в свою очередь, состоит из нейронов, и каждый выполняет свою роль. Есть нейроны (или группы нейронов), которые учатся выделять важные элементы на изображениях, например шерсть у кошки или собаки; есть те, которые учатся делать выводы, исходя из выделенных элементов — например, если у животного длинные лапы, то, скорее всего, это собака. Эти нейроны объединяются в группы (слои), а они превращаются в единую нейронную сеть.

И все же можно как-то сравнить процессы внутри нейросети с деятельностью мозга?

Некоторое количество идей, используемых в нейросетях, разработчики почерпнули из знаний об устройстве человеческого мозга. Одни из самых частых задач для нейросетей — это задачи, связанные с работой с изображениями. Для таких задач используют специальный тип нейросетей, внутри которых есть так называемые сверточные слои.

Если говорить упрощенно, смысл этих слоев в том, чтобы оценивать каждый элемент картинки (пиксель) не отдельно, а в группе с несколькими соседними, благодаря чему можно находить как базовые фигуры (линии, углы, и т.д.), так и объекты целиком. Примерно такой же процесс происходит и в человеческом мозге при обработке визуальной информации. После снятия всех возможных визуальных признаков в нейросети, как и в человеческом мозге, происходит анализ этих признаков, а затем принимается решение: видим мы, допустим, кошку или собаку.

А как происходит процесс обучения?

Процесс обучения алгоритма во многом напоминает процесс обучения человека. Как мы совершаем ошибки и учимся на них (например, что не стоит засовывать руку в кипящую воду), так и алгоритмы, использующие машинное обучение, совершают ошибки, за что получают штраф.

В качестве примера можно рассмотреть процесс обучения нейросети распознаванию лиц. Чтобы корректно обучить любую нейросеть, нужно сделать две вещи: собрать достаточное количество данных и определить, за что мы будем ее штрафовать. Применительно к этой задаче, необходимо собрать несколько десятков фотографий лиц для каждого из людей, которых надо определить, и штрафовать нейросеть за то, что предсказанный ею человек не совпадает с человеком на фотографии.

Что значит «поощрять» и «штрафовать» нейросеть?

С математической точки зрения нейросеть — это функция с большим количеством параметров. Штрафование этой функции за неверное определения лица — это когда мы, упрощенно говоря, корректируем работу функции таким образом, чтобы в будущем она меньше ошибалась. Соответственно, поощрение нейросети — это когда мы ее просто не штрафуем.

Во всех примерах вы рассказываете про конкретные задачи. А можно ли нейросеть научить думать, как человек?

Это уже скорее философский вопрос. Мыслительный процесс напрямую связан с наличием сознания. Нейронная сеть, как и любой другой алгоритм машинного обучения, по своей сути является лишь математической функцией, и умеет решать лишь одну конкретную задачу. Нейросеть, которую учили отличать кошек и собак, не сможет отличить медведя от слона, ведь она даже не знала, что такие существуют. Процессы же анализа данных, которые происходят в голове у человека, намного сложнее чем те, что происходят в нейросети, так что даже при наличии данных, сопоставимых по размеру с массивом информации, которую за жизнь получает человек, сегодня обучить нейросеть думать, как человек, невозможно.

Подписывайтесь и читайте нас в Яндекс.Дзене — технологии, инновации, эко-номика, образование и шеринг в одном канале.

М Машинное обучение

Многие пользователи постиндустриальной эпохи задавались вопросом: Machine Learning – что это? Фантастическое будущее, которое уже наступило или очередная непонятная теория вроде квантового дуализма. Не то и не другое.

Машинное обучение (МО), а именно так переводится этот термин, является ветвью искусственного интеллекта. Более детальнее – это методика анализа данных, которые позволяют машине/роботу/аналитической системе самостоятельного обучаться посредством решения массива сходных задач.

Выглядит немного громоздко. Если упростить, то технология машинного обучения — это поиск закономерностей в массиве представленной информации и выбор наилучшего решения без участия человека.

Принцип МО интересно продемонстрировали в гугловском ролике «Google’s DeepMind AI Just Taught Itself To Walk».

Аналитической системе дали задание добраться из одной точки в другую, используя двуногую и четырехногую модель. При этом не показали, как выглядит ходьба и перемещение на четырех конечностях. Машина путем перебора массива данных, совершая ошибки и пробуя заново, нашла оптимальные варианты движения для двух моделей.

Что касается фантастического будущего, то МО условно делят на три стадии внедрения:

  1. Технологии получают приставку «инновационные», а значит, к ним имеют доступ только крупные корпорации и правительственные структуры. Например, Google и Amazon, IBM и Apple первыми стали внедрять искусственный интеллект. Собственно любая система, которая пытается предсказать покупательский спрос на основе массива данных, связана с технологией машинного обучения.
  2. Технологиями пользуются люди с определенным багажом знаний в IT сфере, которые имеют доступ к современным разработкам, гаджетам. Появление новых сервисов, основанных на технологии искусственного интеллекта. Яркий пример – аналитические машины Гугла и Яндекса в контекстной рекламе.
  3. Технологии доступны даже школьнику, людям «лампового» поколения, которые вполне серьезно опасаются «Восстания машин» по аналогии с блокбастером «Терминатор».


Многие эксперты считают, что искусственный интеллект находится на переходной стадии между вторым и третьим уровнем. То есть подкованные в IT люди уже пользуются инновациями, а большинство ещё побаивается.

Сфера применения

Мы рассмотрели Machine Learning – что это понятие означает. Теперь самое время рассмотреть для чего используется МО в бизнесе и жизни.

Спросите человека, увлеченного робототехникой, о сфере применения машинного обучения. Вы услышите много фантастических историй. Например, роботы будут самостоятельно обучаться выполнять поставленные человеком задачи. Добывать в недрах Земли полезные ископаемые, бурить нефтяные и газовые скважины, исследовать глубины океана, тушить пожары и прочее. Программисту не нужно будет расписывать массивные и сложные программы, боясь ошибиться в коде. Робот, благодаря МО, сам будет обучаться вести себя в конкретной ситуации на основе анализа данных.

Здорово, но пока фантастично. В будущем, может даже и не слишком далеком – это станет реальностью.

На что сейчас способен искусственный интеллект и машинное обучение. Сегодня технологию используют больше в маркетинговых целях. Например, Google и Яндекс применяют МО для показа релевантной рекламы пользователям. Вы замечали не раз, что поискав в сети интересующий товар, потом вам несколько часов, а то и дней, показывают похожие предложения.

По такому же принципу формируются умные ленты в соцсетях. Аналитические машины ФБ, ВК, Инстаграм, Твиттер исследуют ваши интересы – какие посты чаще просматриваете, на что кликаете, какие паблики или группы посещаете и другое. Чем дольше и чаще вы активничаете в соцсетях, тем более персонализированной становится ваша лента новостей. Это и хорошо и плохо. С одной стороны – машина отсеивает массив неинтересной (по её мнению) информации, а с другой – она сужает ваш кругозор. Маркетинг – ничего личного!

Машинное обучение используется в структурах обеспечения безопасности. Например, система распознавания лиц в метро. Камеры сканируют лица людей, входящих и выходящих из метро. Аналитические машины сравнивают снимки с лицами, которые находятся в розыске. Если сходство высоко, то система подает сигнал. Сотрудники полиции идут на проверку документов у конкретного человека.

Искусственный интеллект уже внедряют в медицинские учреждения. Например, обработка данных о пациентах, предварительная диагностика и даже подбор индивидуального лечения на основе информации о болезни человека.

Виды машинного обучения

Методы машинного обучения – это совокупность задач, направленных на проверку гипотез, поиск оптимальных решений с помощью искусственного интеллекта. Выделяют три направления:

    Обучение с учителем (supervised learning). В этом случае в аналитическую систему загружается массив данных по конкретной задаче и задается направление – цель анализа. Как правило, нужно предсказать что-либо или проверить какую-либо гипотезу.

Например, у нас есть данные о доходах интернет-магазина за полгода работы. Мы знаем, сколько продано товаров, сколько потрачено денег на привлечение клиентов, ROI, средний чек, количество кликов, отказов и другие метрики. Задача машины проанализировать весь массив данных и выдать прогноз дохода на предстоящий период – месяц, квартал, полгода или год. Это регрессивный метод решения задач.
Другой пример. На основе массива данных, критериев выборки нужно определить является ли текст письма на электронную почту спамом. Или, имея данные успеваемости школьников по предметам, зная их IQ по тестам, пол и возраст, нужно помочь выпускникам определиться с профориентацией. Аналитическая машина выискивает и проверяет общие черты, сравнивает и классифицирует результаты тестов, оценки по школьной программе, склад ума. На основе данных делает прогноз. Это задачи классификации.
Обучение без учителя (unsupervised learning). Обучение строится на том, что человеку и программе неизвестны правильные ответы заранее, имеется только некий массив данных. Аналитическая машина, обрабатывая информацию, сама ищет взаимосвязи. Зачастую на выходе имеем неочевидные решения.

Например, мы знаем данные о весе, росте и типе телосложения 10 000 потенциальных покупателей джемперов определенного фасона. Загружаем информацию в машину, чтобы разбить клиентов по кластерам в соответствии с имеющимися данными. В результате мы получим несколько категорий людей со схожими характеристиками, чтобы для них выпустить джемпер нужного фасона. Это задачи кластеризации. Другой пример. Чтобы описать какое-либо явление приходится задействовать 200-300 характеристик. Соответственно визуализировать такие данные крайне сложно, а разобраться в них просто невозможно. Аналитическая система получает задание обработать массив характеристик и выбрать схожие, то есть сжать данные до 2-5-10 характеристик. Это задачи уменьшения размерности.
Глубокое обучение (Deep learning). Глубокое машинное обучение – это обязательно анализ «Больших данных» — Big Data. То есть одним компьютером, одной программой переработать столько информации просто невозможно. Поэтому используются нейронные сети. Суть такого обучения в том, что огромное поле информации разделяется на небольшие сегменты данных, обработка которых делегируется другим устройствам. Например, один процессор только собирает информацию по задаче и передает дальше, четыре других процессора анализируют собранные данные и передают результаты дальше. Следующие в цепочке процессоры ищут решения.

Например, система распознавания объектов работает по принципу нейросети. Сначала фотографируется объект целиком (получение графической информации), потом система разбивает данные на точки, находит линии из этих точек, строит из линий простые фигуры, а из них – сложные двумерные и далее 3D-объекты.

Классы задач машинного обучения


Обобщим задачи МО:

  1. Регрессия. На основании массива признаков или характеристик предсказать вещественный результат. То есть машина должна выдать конкретную цифру. Например, предсказать стоимость акций на бирже, количество запросов по ключевому слову, бюджет контекстной рекламы и другое.
  2. Классификация. Задача определить по количеству и качеству признаков, характеристик категорию объекта. Например, распознать по снимку конкретного человека в розыске, имея только описания на словах, определить спам, выявить болезнь у пациента.
  3. Кластеризация. Данные разбиваются на похожие категории. Например, космические объекты относят в конкретные категории по схожим признакам (удаленность, размер, планета или звезда и другие).
  4. Уменьшение размерности. Сжатие массива характеристик объекта до меньшего количества признаков для дальнейшей визуализации или использования в работе. Например, сжатие массива данных в архивы для передачи по сети.

Основы машинного обучения


Часто приходится слышать о Machine Learning – что это очень сложная научная дисциплина, осилить которую могут только гении высшей математики и программирования. Однако МО на самом деле гораздо проще, чем кажется на первый взгляд. По крайней мере, изучить основы искусственного интеллекта может любой образованный человек.

Что для этого нужно:

  1. Владеть английским языком на нормальном уровне. Зачем? Чтобы общаться без проблем в кругу единомышленников. В Европе, кстати, незнание английского считается признаком дурного тона. Акцент никого не интересует, но если имеются трудности с построением предложений, то будут трудности и с общением.
  2. Основы программирования. В машинном обучении применяется Python или Matlab. Также не лишним будет понимать, как работают базы данных.
  3. Неплохо подтянуть знания в математике, особенно раздел алгоритмов. Для начала подойдет классический курс Эндрю Энга «Машинное обучение». В курсе много практики, и, главное, нет упора на обширный математический багаж.

Для углубленного обучения МО советуем записаться на курсы от ВШЭ или специализацию от МФТИ.

Предлагаем добавить в свою библиотеку следующие книги по искусственному интеллекту и МО:

  • Стюарт Рассел, Питер Норвиг «Искусственный интеллект. Современный подход»
  • Джордж Ф. Люгер Искусственный интеллект. «Стратегии и методы решения сложных проблем»
  • Петер Флах «Машинное обучение»
  • Себастьян Рашка «Python и машинное обучение»
  • Шарден Б., Массарон Л., Боскетти А. «Крупномасштабное машинное обучение вместе с Python»
  • Тарик Рашид «Создаем нейронную сеть»
  • Хенрик Бринк, Джозеф Ричардс «Машинное обучение»

Все книги можно купить на Озоне.

Резюме

Мы изучили на примерах, что такое машинное обучение. Познакомились с методиками обучения, которые применяются в искусственном интеллекте. Узнали классы задач, решаемые МО. В предыдущем абзаце мы указали ряд книг и курсов, которые помогут в освоении технологий машинного обучения.

Обработка данных и машинное обучение

Ведущая платформа обработки и анализа данных позволяет коллективам вести совместную работу, применять передовые инструменты с открытым исходным кодом и развиваться в требуемом для предприятия темпе и масштабе

Что такое машинное обучение?

Машинное обучение — это форма искусственного интеллекта, позволяющая системе обучаться на основе данных, а не путем программирования в явном виде. Однако это непростой процесс. По мере того как алгоритмы обрабатывают наборы обучающих данных, на основе таких данных могут создаваться более точные модели. Модель машинного обучения представляет собой результат, получаемый при обучении машинного алгоритма с помощью данных. После завершения обучения модель выдает выходные данные, когда в нее вводятся входные данные. Например, алгоритм прогнозирования создает модель прогнозирования. Затем, когда в модель прогнозирования вводятся данные, она выдает прогноз на основе тех данных, которые использовались для обучения модели.

Итеративное обучение

Машинное обучение позволяет обучать модели на основе наборов данных до использования моделей. Некоторые модели машинного обучения работают постоянно. Такой итеративный процесс обучения моделей позволяет улучшать типы связей между элементами данных. Человек не всегда обнаруживает такого рода зависимости и связи вследствие их сложности и большого объема данных. После завершения обучения модели она может использоваться в режиме реального времени для продолжения обучения на основе поступающих данных. Повышение точности достигается в результате процесса обучения и автоматизации, которые являются частью машинного обучения.

Подходы к машинному обучению

Для повышения точности прогнозных моделей необходимо применять соответствующие методы машинного обучения. В зависимости от характера рассматриваемых бизнес-задач применяются различные подходы, учитывающие типы и объемы данных. В этом разделе рассказывается о категориях машинного обучения.

Контролируемое обучение

Обычно контролируемое обучение начинается с определенного набора данных и понимания того, как эти данные могут быть классифицированы. Контролируемое обучение предназначено для поиска закономерностей в данных, которые могут использоваться в процессе анализа. Эти данные характеризуются рядом особенностей, которые определяют значение данных. Например, можно создать приложение машинного обучения, которое будет различать миллионы животных, опираясь на их изображения и текстовые описания.

Неконтролируемое обучение

Неконтролируемое обучение используется, когда задача включает огромные объемы непомеченных данных. Например, все приложения социальных сетей, такие как Twitter, Instagram и Snapchat, содержат большие объемы непомеченных данных. Понимание смысла таких данных требует наличия алгоритмов для классификации данных на основе найденных закономерностей или кластеров. Неконтролируемое обучение представляет собой итеративный процесс анализа данных без участия человека. Такое обучение применяется в технологии обнаружения спама в электронной почте. Аналитику необходимо было учитывать слишком большое число переменных, для того чтобы отличить легитимное электронное сообщение от спама и пометить рекламные групповые рассылки. Вместо этого для идентификации нежелательной электронной почты применяются классификаторы машинного обучения, основанные на кластеризации и ассоциации.

Обучение с подкреплением

Обучение с подкреплением представляет собой поведенческую модель обучения. Алгоритм получает обратную связь в результате анализа данных и направляет пользователя на получение наилучшего результата. Обучение с подкреплением отличается от других видов контролируемого обучения, поскольку система не проходит обучение на основе эталонного набора данных. Система, скорее, обучается методом проб и ошибок. Таким образом, последовательность успешных решений приводит к закреплению процесса, поскольку задача решается наилучшим образом.

Глубокое обучение

Глубокое обучение — это специализированный метод последовательного итеративного обучения нейронных сетей на основе данных. Глубокое обучение оказывается особенно эффективным для выявления закономерностей в неструктурированных данных. Глубокое обучение сложных нейронных сетей призвано моделировать работу человеческого мозга, чтобы компьютеры могли научиться работать с нечетко определенными абстракциями и задачами. Обычный пятилетний ребенок может легко отличить лицо учителя музыки от лица учителя физкультуры. Компьютеру же приходится выполнить массу работы, чтобы выяснить, кто есть кто. Нейронные сети и глубокое обучение часто используются в программах для распознавания изображений и речи, а также машинного зрения.

Большие данные в контексте машинного обучения

В процессе машинного обучения необходимо применять надлежащие наборы данных. Для использования технологий машинного обучения организации не требуется наличие больших данных, однако они могут повысить точность моделей машинного обучения. Технологии больших данных позволяют виртуализировать данные и хранить их наиболее эффективным и экономичным способом, локально или в облаке. Кроме того, повышение пропускной способности и надежности передачи данных по сети устраняет и другие физические ограничения, связанные с обращением с большими объемами данных с приемлемой скоростью. Все это, в сочетании с последствиями падения стоимости компьютерной памяти и ее усовершенствования, открывает перед компаниями такие возможности работы с данными, какие еще лет пять назад невозможно было представить.

Машинное обучение для чайников

С технологиями машинного обучения сегодня сталкивается повседневно каждый житель мегаполиса. Но не каждый знает, на что машинное обучение действительно способно.

Машинное обучение с каждым днем занимает всё большее место в нашей жизни ввиду огромного спектра его применений. Начиная от анализа пробок и заканчивая самоуправляемыми автомобилями, всё больше задач перекладывается на самообучаемые машины.

Мы порой даже примерно не представляем, как работают некоторые приложения, основанные на методах машинного обучения. Скажем, никто не сможет вам ответить на вопрос «Почему мне сегодня в рекламе показали сайт A, а не Б?». Наиболее печальным во всей этой ситуации является то, что большинство людей имеет неверное представление о машинном обучении.

Вводная

Машинное обучение считается ветвью искусственного интеллекта, основная идея которого заключается в том, чтобы компьютер не просто использовал заранее написанный алгоритм, а сам обучился решению поставленной задачи.

Любую работающую технологию машинного обучения можно условно отнести к одному из трёх уровней доступности. Первый уровень — это когда она доступна только различным технологическим гигантам уровня Google или IBM. Второй уровень — это когда ей может воспользоваться людей студент с некоторым багажом знаний. Третий уровень — это когда даже бабуля способна с ней совладать.

Машинное обучение находится сейчас на стыке второго и третьего уровней, за счёт чего скорость изменения мира с помощью данной технологии растет с каждым днем.

Обучение с учителем и без учителя

Большую часть задач машинного обучения можно разделить на обучение с учителем (supervised learning) и обучение без учителя (unsupervised learning). Если вы представили себе программиста с плёткой в одной руке и куском сахара в другой, вы немного ошиблись. Под «учителем» здесь понимается сама идея вмешательства человека в обработку данных. При обучении с учителем у нас есть данные, на основании которых нужно что-то предсказать, и некоторые гипотезы. При обучении без учителя у нас есть только данные, свойства которых мы и хотим найти. На примерах разницу вы увидите немного яснее.

Обучение с учителем

У нас есть данные о 10 000 квартирах в Москве, причём известна площадь каждой квартиры, количество комнат, этаж, на котором она расположена, район, наличие парковки, расстояние до ближайшей станции метро и так далее. Кроме того, известна стоимость каждой квартиры. Нашей задачей является построение модели, которая на основе данных признаков будет предсказывать стоимость квартиры. Это классический пример обучения с учителем, где у нас есть данные (10 000 квартир и различные параметры для каждой квартиры, называемые признаками) и отклики (стоимость квартиры). Такая задача называется задачей регрессии. О том, что это такое, мы поговорим чуть позже.

Другие примеры: на основании различных медицинских показателей предсказать наличие у пациента рака. Или на основании текста электронного письма предсказать вероятность того, что это спам. Такие задачи являются задачами классификации.

Обучение без учителя

Интереснее ситуация обстоит с обучением без учителя, где нам неизвестны «правильные ответы». Пусть нам известны данные о росте и весе некоторого числа людей. Необходимо сгруппировать данные на 3 категории, чтобы для каждой категории людей выпустить рубашку подходящего размера. Такая задача называется задачей кластеризации.

Еще одним примером можно взять ситуацию, когда у нас каждый объект описывается, скажем, 100 признаками. Проблема таких данных заключается в том, что построить графическую иллюстрацию таких данных, мягко говоря, затруднительно, поэтому мы можем уменьшить количество признаков до двух-трёх. Тогда можно визуализировать данные на плоскости или в пространстве. Такая задача называется задачей уменьшения размерности.

Классы задач машинного обучения

В предыдущем разделе мы привели несколько примеров задач машинного обучения. В этом мы постараемся обобщить категории таких задач, сопроводив список дополнительными примерами.

  • Задача регрессии: на основании различных признаков предсказать вещественный ответ. Другими словами, ответом может быть 1, 5, 23.575 или любое другое вещественное число, которое, например, может олицетворять стоимость квартиры. Примеры: предсказание стоимости акции через полгода, предсказание прибыли магазина в следующем месяце, предсказание качества вина на слепом тестировании.
  • Задача классификации: на основании различных признаков предсказать категориальный ответ. Другими словами, ответов в такой задаче конечное количество, как в случае с определением наличия у пациента рака или определения того, является ли письмо спамом. Примеры: распознавание текста по рукописному вводу, определение того, находится на фотографии человек или кот.
  • Задача кластеризации: разбиение данных на похожие категории. Примеры: разбиение клиентов сотового оператора по платёжеспособности, разбиение космических объектов на похожие (галактики, планеты, звезды и так далее).
  • Задача уменьшения размерности: научиться описывать наши данные не N признаками, а меньшим числом (как правило, 2-3 для последующей визуализации). В качестве примера помимо необходимости для визуализации можно привести сжатие данных.
  • Задача выявления аномалий: на основании признаков научиться различать отличать аномалии от «не-аномалий». Кажется, что от задачи классификации эта задача ничем не отличается. Но особенность выявления аномалий состоит в том, что примеров аномалий для тренировки модели у нас либо очень мало, либо нет совсем, поэтому мы не можем решать такую задачу как задачу классификации. Пример: определение мошеннических транзакций по банковской карте.

Нейронные сети

В машинном обучении есть большое число алгоритмов, причём некоторые являются довольно универсальными. В качестве примеров можно привести метод опорных векторов, бустинг над решающими деревьями или те же нейронные сети. К сожалению, большая часть людей довольно смутно представляет себе суть нейронных сетей, приписывая им свойства, которыми они не обладают.

Нейронная сеть (или искусственная нейронная сеть) — это сеть нейронов, где каждый нейрон является математической моделью реального нейрона. Нейронные сети начали пользоваться большой популярностью в 80-х и ранних 90-х, однако в конце 90-х их популярность сильно упала. Впрочем, в последнее время это одна из передовых технологий, используемых в машинном обучении, применяемая в огромном количестве приложений. Причина возврата популярности проста: увеличились вычислительные способности компьютеров.

С помощью нейронных сетей можно решать как минимум задачи регрессии и классификации и строить крайне сложные модели. Не вдаваясь в математические подробности, можно сказать, что в середине прошлого века Андрей Николаевич Колмогоров доказал, что с помощью нейронной сети можно аппроксимировать любую поверхность с любой точностью.

Фактически же, нейрон в искусственной нейронной сети представляет собой математическую функцию (например, сигмоидную функцию), которой на вход приходит какое-то значение и на выходе получается значение, полученное с помощью той самой математической функции.

Ограниченность нейронных сетей

Впрочем, в нейронных сетях нет ничего магического и в большинстве случаев опасения касательно сценария «Терминатора» не имеют под собой оснований. Допустим, учёные натренировали нейронную сеть на распознавание рукописных цифр (такое приложение может использовать, скажем, на почте). Как может работать такое приложение и почему здесь не о чем беспокоиться?

Допустим, мы работаем с изображениями 20×20 пикселей, где каждый пиксель представляется оттенком серого (всего 256 возможных значений). В качестве ответа у нас имеется одна из цифр: от 0 до 9. Структура нейронной сети будет следующая: в первом слое будет 400 нейронов, где значение каждого нейрона будет равно интенсивности соответствующего пикселя. В последнем слое будет 10 нейронов, где в каждом нейроне будет вероятность того, что на изначальном изображении нарисована соответствующая цифра. Между ними будет некоторое число слоев (такие слоя называются скрытыми) с одинаковым количеством нейронов, где каждый нейрон соединён с нейроном из предыдущего слоя и ни с какими более.

Рёбрам нейронной сети (на картинке они показаны как стрелочки) будут соответствовать некоторые числа. Причем значение в нейроне будет считаться как следующая сумма: значение нейрона из предыдущего слоя * значение ребра, соединяющего нейроны. Затем от данной суммы берётся определенная функция (например, сигмоидная функция, о которой мы говорили ранее).

В конечном итоге задача тренировки нейронной сети заключается в том, чтобы подобрать такие значения в ребрах, чтобы отдавая первому слою нейронной сети интенсивности пикселей, на последнем слое мы получали вероятности того, что на изображении нарисована какая-то цифра.

Более простыми словами, в данном случае нейронная сеть представляет собой вычисление математической функции, где аргументы — это другие математические функции, которые зависят от других математических функций и так далее. Разумеется, при подобном вычислении математических функций, где подгоняются некоторые аргументы, ни о каком экзистенциальном риске речи идти не может.

Интересные факты и лайфхаки

Приведём несколько интересных и не совсем очевидных примеров использования машинного обучения в реальной жизни.

Например, вторая кампания Барака Обамы была фактически выиграна лучшей на тот момент командой в области анализа данных. Разумеется, речь не идет о том, что они советовали ему соврать о чем-то, работа строилась значительно более умным путем: они выбирали, в каком штате, перед какой аудиторией, в какой день и на какую тему он должен выступать. Причем каждый раз они замеряли, как это сказывается на опросах вида «За кого бы вы проголосовали, если бы выборы были в ближайшее воскресенье?». Другими словами, подобные решения принимали не политтехнологи, а исключительно специалисты по анализу данных. Особенно интересным это становится в свете того, что, по оценкам специалистов, это дало ему преимущество в 8-10%.

Кроме того, современный интернет довольно сложно представить без ретаргетинга, или персонализированной рекламы. Вспомните: вы выбираете какой-то продукт в интернете, а после покупки ещё на протяжении двух недель вам показывают его в различного рода рекламе. В одном из своих выступлений директор по маркетингу сервисов компании «Яндекс» Андрей Себрант дал на этот счёт такой совет:

Дарю лайфхак. После того как вы купили топор, чтобы не любоваться топорами ещё две недели, зайдите в магазин модной одежды. Дальше, в зависимости от ваших гендерных предпочтений, зайдите либо в мужское, либо в женское бельё. Бросьте несколько предметов в корзину, закройте корзину и уйдите. У этих ребят очень большие бюджеты на ретаргетинг: следующие две недели вас, в зависимости от ваших предпочтений, будут преследовать либо красивые полуодетые мужчины, либо красивые полуодетые женщины. Это лучше, чем топор.

Рекомендации по обучению

Если у вас появилось желание изучить технологии машинного обучения, стоит отметить, что для глубокого изучения предмета с пониманием всего фундамента следует разбираться как минимум в математическом анализе, линейной алгебре и методах оптимизации (с упором на последние два). Кроме того, желательно знать основы программирования и какой-нибудь язык программирования. В машинном обучении, как правило, используется R, Python или Matlab.

Для самого начального изучения отлично подойдет классический курс Эндрю Энга на Coursera по машинному обучению. Главной его особенностью является исключительная практическая направленность, причём обширный багаж математических знаний в данном курсе абсолютно не обязателен.

Мотивировать его изучение можно следующим образом: посмотрите учебный план. Если вы просмотрите все лекции и решите все задания, то вы гарантированно сможете применять все эти вещи на практике. В частности, вы освоите алгоритмы линейной регрессии (задача регрессии), логистической регрессии, метода опорных векторов, нейронных сетей (задача классификации), K-means (кластеризация), PCA (понижение размерности), выявления аномалий и узнаете как построить рекомендательную систему (рекомендация товаров по вашим оценкам, например, фильмов или песен). На последней неделе курса вам также расскажут, как построить систему, которая будет находить и расшифровывать надписи на картинках или опознавать людей.

Для тех, кто хочет изучать предмет со всеми математическими тонкостями в лучших традициях сильных технических вузов, можно порекомендовать курс от ВШЭ или специализацию от МФТИ. Заметим лишь, что специализация является платной и для доступа к ней придется оформить подписку приблизительно за 3000 рублей в месяц. Впрочем, есть бесплатный период в 7 дней.

Ссылка на основную публикацию
Adblock
detector